MOTIVATION AND APPROACH

- **Benefit**: MMC's are lightweight and offer increased stiffness and strength
- **Approach**: Develop a Tape Placement Process
 - Purchase and produce MMC prepreg tape
 - Determine/model processing parameters for consolidation of two tapes
 - Scale-up and automate the tape placement process

BACKGROUND

- **Ultrasonic Consolidation**
 - Sonotrode Oscillation
 - Oxide layer deterioration
 - Elastic-plastic deformation
 - Sonotrode Rotation
 - Weld duration
 - Production rate

WELD COMPONENTS

- **Stack**
 - Horn (Sonotrode)
 - Boosters
 - Anvil
 - Material
- **Controller**
 - Speed
 - Amplitude
 - Pressure
 - Ultrasonics time delay

PROCESS MODEL

- Include frictional heating (surface flux) and deformational heating (volumetric heat generation) in Heat Equation
- 2D Thermal B.C.'s
 - Surface flux between foils
 - Volumetric heat throughout foils
 - Convection on all sides

THERMAL MEASUREMENTS

- Using a front mounted IR camera, it is possible to measure the temperature distribution on the surface of the foils at the nip point.

FUTURE WORK

- Determine "Good Weld" criterion
- Couple thermal and mechanical models
- Design experiments to validate mechanical and thermal model

ACKNOWLEDGEMENTS

- Funding provided by the Army Research Laboratory through the Composite Materials Technology program
- Omer Sahin
- Justin Clewes