

NUMERICAL SIMULATIONS OF STOKES-BRINKMAN EQUATIONS FOR PEARMEABILITY PREDICTION OF DUAL-SCALE FIBROUS POROUS MEDIA

W. R. Hwang^{1,2}, S. G. Advani²

1 School of Mechanical and Aerospace Engineering, Gyeongsang National University, KOREA 2 University of Delaware . Center for Composite Materials . Department of Mechanical Engineering

STOKES-BRINKMAN COUPLING

- Flow in a porous media with surrounding fluid
 - Need a unified approach for entire domain with proper interfacial condition
- Dual-scale flow problem in fibrous porous media
 - · Stokes flow for surrounding (inter-tow) flows
 - Brinkman equation for porous media (intra-tow)
 - General interface condition between two media
 - Bi-periodic simulation (meso-scale)

EQUIVALENT MOMENTUM EQN

- Following a formalism of CSF (continuous surface force) scheme in two phase flow
 - A single momentum equation for both porous and fluid domains with inclusion of 'diffuse' interfacial stress jump

$$\nabla \cdot \boldsymbol{\sigma}^* - \alpha \frac{\eta_f}{K_p} \boldsymbol{u}^* + \frac{\eta_f}{\sqrt{K_p}} \boldsymbol{T} \cdot \boldsymbol{u}^* \delta(\boldsymbol{\phi}(\boldsymbol{x})) = \boldsymbol{0}$$

$$2\varepsilon$$

$$\Omega_{f}(\phi>0)$$

$$\Gamma_{pf}(\phi=0)$$
n

NUMERICAL METHODS

- Finite element formulation
 - · Standard velocity pressure formulation
 - Level-set description for the porous media for easy treatment of complex geometry and interfacial conditions

Matrix equations

TOW ARRANGEMENT

 Considerable effect of distance between tows on the effective permeability is predicted.

CONCLUSIONS

- A new FEM scheme developed for rigorous flow simulation of dual-scale porous media
- In the future, we plan to apply particle deposition and filtration in dual scale porous media

ACKNOWLEDGEMENTS

- National Research Foundation of Korea (Grant No. 2009-0094015).
 National Science Foundation (Grant
- No.0856399)

FLOW IN DUAL-SCALE FIBROUS MEDIA

Single-tow (regular stacking)

Two-tow (squeezed hexagonal stacking)

EFFECTIVE PERMEABILITY

Effect of tow permeability

