THE EFFECTS OF TARGETED APPLIED VIBRATIONS TO PROMOTE VOID REDUCTION DURING COMPOSITES PROCESSING

J. J. Gangloff Jr. (PhDME), R. Readdy, Prof. S.G. Advani

University of Delaware – Center for Composite Materials – Department of Mechanical Engineering

INTRODUCTION

- The elimination of composite defects such as voids is critical for high quality parts
- Voids are areas of high matrix porosity that result from trapped or formed volatile gases
- Voids can degrade the mechanical properties of composites
- Goal is to link void dynamics to process modeling and simulation for optimization

Typical methods for reducing voids:
1. Degassing or heating the resin prior to infusion (i.e. LCM)
2. Increasing processing time to allow voids to collapse or escape
3. Increasing consolidation pressure and temperature to compress the voids (i.e. OOA)

Issues with current methods:
- Proper degassing time and pressure may not be known
- Dependent on the resin volume and chemistry

Preheating
- Infrastructure must be modified for elevated temperatures
- Potential cost increases

Process timing
- Need long process times for sufficient void removal
- Slows down production

There exists a need for new ways to intelligently mitigate voids during composites manufacturing to drive down operating costs and improve production within the composites industry.

FLOW VISUALIZATION

- The bright areas in the distribution media is the void migrating from the left to right towards the vacuum vent
- Viscosity of simulated resin (corn syrup + water mixture) is controlled

IMAGE PROCESSING

- Using our image processing capabilities we can also generate void area statistics of the images
- Void arrival time from the bottom of the preform into the distribution media was measured as a function of MIPR frequency
- Plotted is the average of five trials for each frequency along with standard deviation error bars

RESULTS

- Use targeted vibrations to dislodge trapped voids and promote migration through vacuum pathways
- Pathways within dry fiber areas act as "highways" in which voids travel to escape
- This promotes local resin flow, which can dislodge trapped voids

EXPERIMENTATION

- Preinfused resin in fibers before the introduction of voids simulates prepreg layups
- Distribution media (DM) models prepreg vacuum pathways
- Voided that are dislodged from the fabric can be recorded with CCD camera system
- Void arrival time: the time voids appear in the DM after initial injection

LAB Setup:
- Place dry fabric layers and DM into VARTM setup with vacuum bag
- Monitor DM for void migration with camera system
- Introduce voids by removing the inlet tube for a specific amount of time
- Apply vacuum for resin flow continuously into and out of the vent

ACKNOWLEDGEMENTS

Research was sponsored by the Office of Naval Research under Grant Number N00014-09-1-1011. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research.