

AUTOMATION AND FLOW CONTROL METHODOLOGIES TO IMPROVE REPEATABILITY IN VACUUM INFUSION PROCESSES

INTRODUCTION/OBJECTIVES

- The VARTM process is used to produce less expensive and highly loaded structures.
- The disadvantage of VARTM processing is the variability naturally inherent in the base materials used in the process.
- To improve repeatability in the process, a new process called Vacuum Induced Preform Relaxation (VIPR) can be used to control the flow of resin.
- Further the VIPR process can be used in an automated fashion to correct unanticipated resin flow behavior using:
 - Complex flow control methodologies
 - Simulation tools which allow the flow controllers to be tuned for superior performance.

PI - CONTROL THEORY

- PID style control theory is adapted for manipulating resin flow.
- At each time step simulations

 \bigcirc (I) \bigcirc -**P**→

 $[K_p\mathbf{P} + \frac{K_I}{I}]$ $\epsilon(t) = \frac{1}{r}$ are conducted and minimization epsilon function

shown above is used to determine the best deployment of the chamber.

- Long Range control studies simulation scenarios which represent the final stages of the infusion process.
- Here epsilon simply represents the amount of dry preform.

Justin B. Alms, James L. Glancey, and Suresh G. Advani

University of Delaware . Center for Composite Materials

THE VIPR PROCESS

A partial vacuum in the range of 1-5inHg of vacuum pressure is applied to the chamber which relaxes the fiber stack making the fabric more permeable.

VIPR GANTRY WORKSTATION

The VIPR Process has been integrated into an automated workstation to control the deployment of the chamber during an infusion.

CONCLUSIONS/FUTURE WORK

- Using automated flow control drastically improves repeatability in VARTM processing. In the future many control theories will achieve
- ideal deployment for numerous flow scenarios.

ACKNOWLEDGEMENTS

This work is funded by the Office of Naval **Research, Advanced Material Intelligent Processing Center established at the** University of Delaware, Grant Number N00014-06-1-1000. We would also like to thank Jeff Lawrence for building the first workstation, Pavel Šimáček for his help with LIMS, and Andrew Phillips and **Richard Readdy for performing countless** experiments.