BACKGROUND
- The ballistic penetration resistance behavior of a material is difficult to determine experimentally.
- Quasi-static punch shear testing (QS-PST; Gama and Gillespie, 2008) provides a means of determining a material’s ballistic behavior from its quasi-static behavior.
- Penetration mechanics is a complex problem involving many variables, including:
 - Projectile and target material properties
 - Target dimensions and boundary conditions
 - Projectile dimensions, geometry, mass, and impact velocity
- Dimensional analysis permits grouping of these variables to reduce the complexity of the problem.

RESEARCH OBJECTIVES
- Develop a dimensionless model for application of the QS-PST method to different target dimensions and projectile dimensions and geometries.
- Verify this model with analytical, numerical, and experimental tools.

QS-PST TEST FIXTURE
- Fixture allows variation of many experimental parameters, including:
 - Support span
 - Specimen thickness
 - Punch diameter
 - Punch geometry
 - Penetration depth

DIMENSIONAL EFFECTS
- 0.50" Punch
- 0.30" Punch
- Partial penetration of 22L S-2 glass/SC15 epoxy panels with span-to-punch ratio = 2.0 at similar loading points.
- Penetration mechanisms are a function of the punch-to-thickness ratio.
- Stiffer panels accumulate more damage from shear than bending.

LS-DYNA RESULTS
- Effect of projectile diameter on ballistic penetration curve (cylindrical projectile).
- Larger projectile-to-thickness ratio has greater penetrating ability.

PROJECTILE GEOMETRIES
- Change in penetrator-target contact area with penetration depth due to projectile geometry effects the shape of the load-displacement curve.

GEOMETRIC EFFECTS
- Change in penetrator-target contact area with penetration depth due to projectile geometry effects the shape of the load-displacement curve.

DIMENSIONLESS NUMBERS
- Useful dimensionless relationships:
 - **Nose geometry function, N** – represents slenderness of projectile.
 - **Response number, Rn** – relates severity of impact with dimensions and material properties of the target.

\[
N = \frac{M}{\rho d^2} \frac{1}{B N_1} \quad R_n = \frac{\rho c}{\sigma_s} \left(\frac{D_p}{H_c} \right)^2
\]

ACKNOWLEDGEMENTS
- This work is supported by the Army Research Office and the Army Research Laboratory under Cooperative Agreement Number W911NF-07-1-0294.

© 2009, University of Delaware, all rights reserved.