MODELING THE PROGRESSIVE DAMAGE IN 2D AND 3D WOVEN FABRIC COMPOSITES
S.-G. Kang, B.A. Gama, and J.W. Gillespie, Jr.
University of Delaware. Center for Composite Materials

BACKGROUND

- Advantages of 3D Fabric Composites:
 - High Fracture Toughness (GIC, GIIIC, GIIIIC)
 - Damage Tolerance
 - Easy Handling & Infusion
- Prediction of the Properties of 2D/3D Woven Composites
 - Micro- or Meso-scale Levels through Theoretical and Finite Element (FE) Analysis
 - Non-linear Responses and Softening Behaviors after Damages Have Been Hardly Studied

RESEARCH GOAL AND SCOPE

- Research Goal:
- Research Scope:
 - Single Element (SE) Analysis (SEA) of Uni-Directional (UD) S-2 Glass/SC15 Composites & Pure SC15 Resin
 - Mechanical Response Simulation of 3D S-2 Glass/SC15 OWF Composite using the Meso-Mechanical UCM
 - Homogenization of 3D S-2Glass/SC15 OWF Composite Properties

PROGRESSIVE DAMAGE MODEL FOR UD S-2 GLASS/SC15

- Progressive Composite Damage Model MAT162 in LS-Dyna
- Stress-Based Failure Criteria (Hashin, J Appl Mech, 1980), and Matzenmiller’s Damage Model (Compos Struc, 1995)
- Damage Modes for UD Composite
 - Fiber Tension/Shear
 - Fiber Compression
 - Fiber Crush
 - Transverse Compression
 - Perpendicular Matrix Crack
 - Parallel Matrix (Delamination)

SINGLE ELEMENT ANALYSIS OF UD S-2 GLASS/SC15

SINGLE ELEMENT ANALYSIS OF UD S-2 GLASS/SC15

SUMMARY OF UD S-2 GLASS/SC15 MODEL

SUMMARY OF SC15 INTERSTITIAL RESIN MODEL

© 2010, University of Delaware, all rights reserved
MODELING PROGRESSIVE DAMAGE IN 2D AND 3D WOVEN FABRIC COMPOSITES

(Continued)

UNIT CELL MODEL (UCM) OF 3D OWF COMPOSITE
- Composite Density: 1720.30 kg/m³
- Aerial Density: 9.271 kg/m² (1.9 psf)

X-TENSION
- Homogenized Properties
 \[E_x = 30.2 \text{GPa} \]
 \[v_{12} = 0.0961 \]
 \[S_{XT} = 517.5 \text{MPa} \]
 \[S_{XC} = 299.8 \text{MPa} \]
 \[m_1 = 30 \]
 \[m_2 = 30 \]
 \[SFFC = 0.15 \]

X-COMPRESSION

XY-IN-PLANE SHEAR
- Stress-Strain Curve and Deformed Shape

XZ-INTER-LAMINAR SHEAR
- Stress-Strain Curve and Deformed Shape

APPLICATION
- Prediction of Effective Property For Different 3D OWF Composites

ACKNOWLEDGEMENTS
- Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-07-2-0026.
- The authors gratefully acknowledge the prior funding provided by U.S. Army Research Office, STTR Phase II contract DAAD 19-02-2-0044 “3-D Orthogonal Woven Composites in Armor Systems.” Partial funding was also provided by the Composite Materials Technology (CMT, DAAD19-01-2-0005).