EVALUATION OF REINFORCED POLYMER COMPOSITES FOR ENGINEERING CONTROLS OF SOUND AND VIBRATION D. Brisach, M. Griffith, S. Petfield, P. Popper and J. Glancey University of Delaware. Center for Composite Materials. Department of Mechanical Engineering ### **MOTIVATION** - 2-4 million workers are exposed to vibrating tools annually. - 50% of those workers develop related injuries. - Associated costs are estimated in the hundreds of millions of dollars and growing. - Injuries: - ♦ Hearing Loss - → Hand Arm Vibration Syndrome - ➤ Whiteness of the fingers - ➤ Numbness - ➤ Reduction of feeling sensations - ➤ Diminished grip strength Hands of vibrating pneumatic hand-tool operator in later stages of irreversible Hand Arm Vibration Syndrome. ### **CONCEPTUAL DEVELOPMENT** - Replace metal-to-metal contact in impact tools in order to achieve sound and vibration damping - Use high-performance mineral and glass reinforced composite polymers at impact surface(s) ### Pneumatic Air Hammer: **SOUND & VIBRATION TESTING** ### MATERIAL CONSIDERATIONS ### **Desired Material Properties** - High Stiffness - ♦ Force Transmission - High Strength - → High Stresses Involved - High Toughness - ♦ Impacts - ♦ Tool Longevity ### **Engineering Polymers** - High Toughness - High Flexural Modulus - High Strength - Steel Sleeve Confined Polymer Insert - Confined Compression - Higher Realized Stiffness - Effective Elastic Modulus (E') # $E' = E | 1 - 2^{-\nu}$ where: E' =Effective Modulus E = Rated Tensile Modulus v = Poisson's Ratio ### Pneumatic Air Hammer: Accelerometers Hand-Struck Chisel: ### CONCLUSIONS - Material Selection - ♦ Mineral Reinforced Polymer Composites While the strength and stiffness of the mineral reinforced composites are lower than some glass reinforced polymer composites, the toughness is crucial to durability - Sound & Vibration Emissions - ♦ Both significantly reduced - Geometry - ♦ Confined Compression greater stiffness ### **Future Work:** Quantify the cutting effectiveness (i.e. cutting) of prototype ### **ACKNOWLEDGEMENTS** The authors would like to acknowledge the support of Baltimore Tool Works, Inc. for this research, as well as the Center for Composite Materials and the Undergraduate Research Program.