Through Thickness Thermal Conductivity Enhancement for 3-D Fiber Composites

H. Yu (PhDME), S. Schneiders (Intern), D. Heider and S. G. Advani
University of Delaware . Center for Composite Materials . Department of Mechanical Engineering

INTRODUCTION

◆ Motivation
 ◆ The low through-thickness thermal conductivity of laminated fiber composites restricts their applications in practical systems where heat needs to be removed efficiently.
 ◆ Small thickness implies the best way to extract heat from a composite enclosure is through its thickness direction.

◆ Objectives
 ◆ Understand fundamental limitations of thermal conductivity in existing composites and propose novel approaches.
 ◆ Address measurement issues for heterogeneous samples.

EXPERIMENTAL METHOD AND SETUP

◆ Fourier’s Law based thermal conductivity (TC) measurement setup

SETUP VALIDATION FE MODEL

◆ Axisymmetric FE Model

◆ Modeling approach: Allow for heat loss in radial direction and incrementally change sample conductivity k2 to match T1~T5 temperatures.

HEAT TRANSPORT IN HETEROGENEOUS SAMPLES

◆ Z- fiber composite samples

TC ENHANCEMENT APPROACHES AND MODELS

◆ Approaches
 ◆ Embed Z fibers
 ◆ Create a conductive coating

◆ Models investigated
 ◆ Conductive fiber in thickness direction with/without conductive coating
 ◆ Fiber distribution effect
 ◆ Combined effect of conductive coating and fiber distribution

TC ENHANCEMENT RESULTS

◆ Single-fiber unit cell model

◆ Fixed fiber volume fraction but different fiber distributions

◆ Combined models of fiber distribution with coating

FUTURE WORK

◆ Improve the validity of the model of conductive coated composite samples by manufacturing optimization, and experimental test with the TC measurement setup.

◆ Characterize and validate models of composites with different fibers of different TC, placement and structures.

ACKNOWLEDGEMENTS

This work is supported by National Science Foundation(CMMI-0970002).

© 2012, University of Delaware, all rights reserved