THERMO-MECHANICAL MODELING OF ACOUSTIC SOFTENING DURING ULTRASONIC CONSOLIDATION OF THIN ALUMINUM FOILS

University of Delaware - Center for Composite Materials - Department of Mechanical Engineering

ULTRASONIC CONSOLIDATION (UC) BACKGROUND

- Ultrasonic Consolidation (UC) is a solid-state bonding process in which thin foils or tapes can be built-up layer by layer
- Process Components
 - Sonotrode
 - Foil
 - Substrate
- Weld Parameters
 - Sonotrode Oscillation Amplitude (λ)
 - Clamping Force (F_c)
 - Sonotrode Speed (S)

OBJECTIVE AND MOTIVATION

- Objective: Quantify the amount of acoustic softening that occurs during UC
- Acoustic softening is an important part of UC for the following reasons:
 - Acoustic softening increases plastic deformation, bringing materials into intimate contact and improving bond quality
 - Acoustic softening increases the geometry chance of metal foils during UC and influences tape spacing in large parts
 - Acoustic softening enables the sonotrode's knurl pattern to be filled in when multiple layers of foil are built up

ACOUSTIC SOFTENING

- Reduction in the apparent static stress required to yield a material
- Two causes of acoustic softening:
 - Acoustic energy is absorbed at dislocations in the material, allowing it to yield more easily
 - Stress superposition
- Influenced by the frequency and amplitude of vibrations
- Yield stress is immediately reduced upon application of acoustic energy and is immediately restored upon removal of acoustic energy
- Efficient method to soften metals

MATERIAL MODEL

- The material model accounts for the thermal and acoustic softening that occur during UC
- The strain hardening behavior of Al 1100-0 follows a power law model
- Model includes acoustic softening (ξ)

THERMO-MECHANICAL MODEL

- Abaqus Explicit 6.9-2
- 10-node quadratic tetrahedral elements
- The value of acoustic softening (ξ) is iteratively solved by comparing experimentally measured foil width increase to model prediction under different UC process parameters

RESULTS

- Experimentally Measured and Modeled Foil Width Increases

CONCLUSIONS

- Acoustic softening reduces the yield stress of the Al 1100-0 foils by approximately 66% under the investigated UC process parameters
- Thermal softening is an order of magnitude smaller than acoustic softening during UC
- This model can be used to quantify acoustic softening for a wide range of UC process parameters, foil materials and foil geometries

ACKNOWLEDGEMENTS

- Jennifer Mueller
- This work is supported by the Army Research Laboratory through the Composite Materials Research program.

© 2012, University of Delaware, all rights reserved