ELECTROSPINNING

- Create nano-scale polymer fibers through the use of electric charge
 - Induce charge on polymer solution through applied voltage
 - When electrostatic forces overcome solution surface tension, a charged jet erupts from needle
- Normally undergoes 3 phases
 - Taylor Cone
 - Linear extension
 - Bending Instability
- Different collection methods based on desired orientation
- Current methods that yield oriented fibers are low output

ELECTROHYDRODYNAMIC MODELING

- Motivation: Numerous potential applications
 - Tissue scaffolds, multi-functional composites, filtration, sensors, drug delivery...
 - No model that can successfully link processing parameters with fiber diameter for multiple polymer-solvent systems!
- Helgeson et al. electrohydrodynamic model
 - Reduce dimensionless balance equations based on analogy to traditional uni-axial flow
 - Identify important forces in different sections of stable jet region
 - Experimentally verified for poly(ethylene oxide)-water system through high speed velocimetry

STABLE JET REGIONS

- Helgeson et al. electrohydrodynamic model
 - i. Taylor Cone
 - ii. Jet Initiation
 - Strain Hardening
 - Large increase in extensional viscosity
 - iii. Jet Stretching
 - Reach pseudo-steady state extensional viscosity
 - \(R \sim z^{1/2}, \ v \sim z \)
 - iv. Jet Thinning
 - \(R \sim z^{1/4}, \ v \sim z^{1/2} \)

HIGH SPEED IMAGING

- Goal: Explicitly verify observed scaling laws for a completely different electrospinning system
- Poly(ethylene oxide)-Chloroform
 - Linear jet—No bending instability!
- Collection of highly spatially oriented fibers

RADIUS FITTING

- \(R(z) = A z^n + B z^{-1/2} + C z^{-1/4} \)

VELOCITY PROFILE

- \(v = \frac{Q}{\pi \cdot (R(z))^2} \)

EXPERIMENTAL

- Goal: Explicitly verify observed scaling laws for a completely different electrospinning system
- Poly(ethylene oxide)-Chloroform
 - Linear jet—No bending instability!
- Collection of highly spatially oriented fibers

ACKNOWLEDGEMENTS

Dr. Joe Deitzel
Dr. Norman Wagner
Dr. Matt Helgeson
Dr. Zaicheng Sun
US Army Research Laboratory CMR Program