

OPTIMIZING THE FIBER-MATRIX INTERPHASE FOR CONTROLLED ENERGY ABSORPTION AND STRENGTH

D. Kissounko, J. W. Gillespie, J. Deitzel, A. Abu-Obaid, D. Pappas (ARL), R. Jensen (ARL)

University of Delaware . Center for Composite Materials . Army Research Laboratory, Abredeen, MD

MOTIVATION AND OBJECTIVES

Mechanical performance of fiber reinforced composite can be tailored by varying the interphase between fiber and resin

Two targets: higher energy absorption (improvement of antiballistic impact properties) and higher fracture toughness (improvement of mechanical properties).

- There is a delicate balance between energy absorption and fracture toughness properties: strengthening the interphase leads to improved mechanical properties reducing ballistic properties at the same time.
- ♦ Old approach: try to control the degree of chemical bonding between fiber and resin. New approach: try to tailor both adhesion and texture.

Objectives

- ♦ Optimize sizing mixture composition for E-glass. Spectra and Kevlar fibers.
- ♦ Enhance multifunctionality through nanoparticle hybridization or chemical modification.

INTERPHASE IN E-GLASS FIBER/EPOXY RESIN

- ♦ Sizing Nomenclature
- ◆Incompatible non reactive with resin.
- ♦ Compatible forms chemical bonds with resin.
- ♦ Mixed blend of compatible and incompatible sizings.
- Hybrid blend of mixed sizing and nanoparticles.

FIBER SURFACE - SEM IMAGES

PERFORMANCE OF SIZING **MIXTURES FOR E-GLASS FIBERS**

E-GLASS FIBER HYBRID SIZING OPTIMIZATION

Sery Malayan Militaria	Emistry.	Parket	F7 ₂ Mbs/
in the public and that $\{M_{ij}\}$ is a quantities (1) and 1% or	20.001	1661	1090
And Consideral May Comparation (1999) For a	1816	1651	0.01
Management III, Suspensio (1 se) Pr =	17.004	1,895.1	1000
4/01/07 + 11/10/dates	4010	1201	0.40
\$100 KB + 11,7 KB Bare	1010	1801	3859
8 50 65 - 11.2 66 provisions	180	4081	459
5.83 (R = 11.) (Winnestoke	1966	1960	3.06
#/2H0R47 ~ [1]	31.00	1688	370
ESS Suspension (Street Flori	10.000	480	3.50
M.St., Sarpetite Constitute	45.80	190	3409
El-60, Seepatide (Text) Flori	4.50	4887	0.03
D 60, Nampation (Tree (Tree	10.862	1661	4.90
35-95; Temperatur (Temperatur Fried	281	12007	459
N Linc Temporate China	10.054	1841	74.000
Ethinal Cale/SonderCon	380	1890	856
N St Series-11	300	18404	3.04
17/00/00/00 × 17	20.002	4902	403
B-91-67-11	17484	7094	6.141
P-81-65 - 21	28,4913	1,010.6	3.614
2470.45-13	38.394	1361	609
Reded (SERRELL, NO. Nagarith Charle	33.80	1,718	180

SPECTRA AND KEVLAR400 FIBER SIZING OPTIMIZATION

langer i	-	distribution.	Museum.	25,000	P- 100
		Store-			
Reduction I WILLIAMS		.109	310119	- PROPER	1/811
1	4.	10%	. 6 (0.4C) E.	1965491	11761
100	1.	4760	17003	INDEED	1965
		Addition.	141140-0	Memorial	6464.6
	- 0	title	10100	111111	1901
	81.1	1860	36160	LHROD	1000
	. 14	1991	7003474	THATT	19904
1	#.	2356	10000	114640	18100
		104175			
Seatorin (III, wing)		0.04	11341	(14hc)	6704
		9.60	1.000	duran	10 304
AL.	+17	196	0.0464	18861	1116
- 1		1100	815461	34fe/	14%
- 1	*	1100	1961	1/8/	1.00
4.1	86	4.1%	10461	1000	2736
	. 20	.110e	Their	7910	2350
		1100	B40mil	1601	1440

OPTIMIZING THE FIBER-MATRIX INTERPHASE FOR CONTROLLED ENERGY ABSORPTION AND STRENGTH

(Continued)

SPECTRA AND FIBERS SIZING OPTIMIZATION (CONTINUED)

KEVLAR400 FIBER SIZING OPTIMIZATION (CONTINUED)

MECHANICAL PROPERTIES OF PLASMA TREATED SPECTRA FIBERS

	AS Received	AS Received		
Property	Average	CV (%)	Average	CV (%)
Strength (g/den)	32.97±1.44	4.2	31.74±1.90	5.9
Modulus (g/den)	1406 ±41	2.9	1363 ±85	6.2
Strain at Failure (%)	3.02 ±0.31	10.2	3.35 ±0.22	6.6

FIBER FAILURE MODES – SEM IMAGES

Spectra

Kevlar

CONCLUSIONS

- ♦ The combination of soft (Latex) and hard (silica) nanoparticles imbedded in hybrid polysiloxane sizing yields the best balance between IFSS and energy absorption.
- Plasma treatment followed by silica coating for Spectra fibers provides the best balance between IFSS and energy absorption. In the case of Kevlar 400 fibers the best results were obtained for silica coated fibers not subjected to a plasma treatment.
- Spectra fibers retain tensile strength properties after being exposed to a plasma treatment.

ACKNOWLEDGEMENTS

Dr. Jack Gillespie - CCM

Dr. Joseph Deitzel – CCM

Dr. Ahmad Abu-Obaid – CCM

Dr. Xiao Gao – CCM alumni Dr. Daphne Pappas – ARL

Dr. Rob E. Jensen – ARL

Dr. Steve H. McKnight – ARL

ARL - \$\$\$