

EFFECTS OF THE WEAVING PROCESS ON TENSILE STRENGTH DISTRIBUTION OF S2 GLASS FIBERS

M. Harbison (Intern), A. Abu Obaid

University of Delaware . Center for Composite Materials .

CURVATURE TEST

Isolate effects of curvature by wrapping dry control fibers around rod of radius equal to woven fiber radius then test and reduce like impregnated fibers

 In previous tests, dry z-tows had exhibited strength losses of ~65% with respect to control fibers, which prompted the curvature test. The wound tows only showed a strength loss of ~15%.

CONCLUSIONS

- Strength distributions for fibers show overall fiber strength loss of ~10%, with warp having the highest retained strength and Z-tows showing the lowest retained strength.
- From curvature test, it seems that abrasion is responsible for the majority of the strength loss.

FUTURE WORK

- Attempt to isolate effects of abrasion on the fibers as closely to what is experienced in weaving process
- Analyze effects of interaction of the curvature with abrasion

 Identified sources of damage include abrasion during weaving as well as the curvature of the fibers

OBJECTIVE

Determine effects of weaving on strength retention

PROCEDURE

- Carefully extract tows from all sub-layers of fabric
 Weft Top, Middle, and Bottom
 - Warp Top and Bottom

♦Z-tows

- Impregnate tows with Vinyl Ester 8084 and post-cure
- End-tab for testing with ASTM Standard D 4018-99
- Test, then use Minitab to reduce strength data and find peak and mean strength retention

 With respect to control fibers, peak strength decreased by ~10% for weft top tows and ~14% for weft middle and bottom tows

WARP RESULTS

top and bottom tows

IMPREG. Z-TOW RESULTS

 With respect to control fibers, peak strength decreased by ~30% for Ztows

ACKNOWLEDGEMENTS

This work is supported by the 3TEX® company.